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Abstract. In this paper we classify all differential invariants of parametrized curves in R
2 under

the action of O(3, 1). We find a formula for the most general evolution of such curves which are
invariant under the action. We show that our formula induces a natural evolution on a generating
set of differential invariants and we prove that such an evolution is Hamiltonian, giving an explicit
expression of its Poisson tensor.

1. Introduction

The second Hamiltonian structure for KdV equations or Adler–Gel’fand–Dikii (AGD) brackets
were defined originally by Adler [1] in order to prove that generalized KdV evolutions were
infinite-dimensional biHamiltonian systems and hence completely integrable. This bracket
was presumed to be Poisson until Gel’fand and Dikii proved its Jacobi identity in a real tour
de force found in [7]. Since the original definition due to Adler was not very intuitive, and the
Jacobi identity certainly not trivial, several alternative definitions have been given since then
by different authors [13], [3] and [15], in an effort to understand their true significance.

The original definition was algebraic in nature, as was the definition of Kuperschmidt and
Wilson that followed it. The interpretations of these brackets became increasingly geometric
and one of them, perhaps the most striking one given by Drinfeld and Sokolov in [3], allowed
their generalization from their original GL(n) and SL(n) cases, to the case of any semisimple
Lie algebra g. In the case of SL(n), the author recently gave a purely geometrical definition
in [15]. It could be summarized as follows.

Consider I1, I2, . . . , In to be projective differential invariants of parametrized curves in
R

n generating any other invariant (that is, any other differential invariant will be a combination
of them and their derivatives with respect to the curve parameter. For example, in the case
of Euclidean plane geometry, the curvature of the curve would be the generating differential
invariant. For further explanations see the following section). Since Ij are given explicitly in
terms of the coordinates of the curve and their derivatives, they can be thought of as maps from
the jet space Jk of parametrized curves in R

n to R, which are invariant under the projective
prolonged action of SL(n) on Jk . k is a certain appropriate order (see the next section for the
precise definition). Now, let

φt = F(φ, φθ , φθθ , . . .) (1.1)

be the most general evolution of curves in R
n which is invariant under the projective action of

SL(n) on R
n (that is, the group takes solutions to solutions). This evolution naturally induces
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an evolution on the variables of the jet space via differentiation, and hence an evolution on
the invariants Ij , j = 1, 2, . . . , n. In [15] it was proved that, under certain rather natural
assumptions, this evolution is given by the AGD bracket. Moreover, vice versa, any AGD
evolution can be viewed as an invariant evolution of differential invariants. Hence, the
AGD evolution can be defined as the general invariant evolution of projective differential
invariants. This approach also allows us to reinterpret the Poisson tensor as what is usually
called a relative differential invariant of the projective action of SL(n). The geometric
significance of the Jacobi identity in this invariant setting is still unknown. See [8] and [9]
for a physical motivation to the relationship between evolutions of differential invariants and
KdV.

The aim of this paper is to advance the study of infinite-dimensional Hamiltonian
evolutions related to conformal geometry. That is, we would like to know if there is an
analogue of the AGD Poisson bracket when we consider the conformal action of O(n + 1, 1)

on R
n instead of the action of SL(n + 1). In particular, we study the O(3, 1) case.
Approaching Hamiltonian evolutions in infinite dimensions from an invariant point of

view presents a fundamental problem; namely, the differential invariants of many of the main
groups are not completely classified, including many of the groups of physical importance
(general linear, affine, conformal etc). Therefore, if one follows this approach, the search for
independent and generating differential invariants becomes part of the search for new Poisson
tensors in infinite dimensions. On the other hand, this setting allows us the study of unexpected
generalizations, for example the case of Poisson tensors in several independent variables.
Indeed, the present author showed in [14] that differential invariants of reparametrizations of
the projective plane produce, via their invariant evolution, a family of KdV Poisson structures
in every direction of the projective plane. She also explained how KP equations are not likely
to be found through this approach due to its non-local character.

The subject of differential invariants and invariant evolutions is in itself highly
interesting. Among its applications, the study and classification of differential invariants
and invariant evolutions of curves and surfaces under certain groups (Euclidean, affine,
projective and conformal) has become relevant in the subject of image enhancing and image
processing (see [20] and references within). The classification of differential invariants of
reparametrizations of R

n or parametrized submanifolds is directly related to the classification
of invariant cocycles of some infinite-dimensional Lie algebras, which is itself related to
quantization. There is, of course, a traditional interest in invariants since they allow us to
classify submanifolds up to the action of the group. That is, if two submanifolds ought
to be equivalent (the group takes one to the other) they must have the same invariants. A
traditional method to find these invariants is the method of moving frames described by Cartan.
A modification of Cartan’s method has been recently developed by Fels and Olver in [4]
and [5]. The new method is more practical in many instances, especially if one needs to find
explicit expressions for the invariants. Most notably, the method of Fels and Olver bypasses the
complications that one faces in the process of normalization found in the traditional approach.
We will make use of this new method in the next section.

The paper is divided into three additional sections.
In section 2, using the method of Fels and Olver, I find a complete set of differential

invariants of parametrized curves in R
2, invariant under the prolonged conformal action of

O(3, 1). I show that these invariants are independent and generating. To the extent of my
knowledge, they are not previously known.

In section 3 I find a nondegenerate matrix of relative invariants and, using that matrix, I
find a formula for the most general evolution of parametrized curves in R

2, invariant under the
conformal action of O(3, 1).
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Finally, in section 4 I calculate the evolution induced upon the invariants by the invariant
evolution found in section 3. I show that such an evolution is Hamiltonian. I could not find
any reference to this special infinite-dimensional Poisson bracket in the literature, although
the literature on this subject is so enormous that it could be known. It would certainly be
very interesting to relate this tensor to some known evolution. Since in dimension n = 1
(the action of O(2, 1) and SL(2) on R) conformal and projective geometries coincide, both
O(2, 1) and SL(2) will produce the usual second KdV structure, or the Lie–Poisson bracket
on the dual of the Virasoro algebra. On the other hand, the next KdV Poisson structure in the
AGD family (the case of SL(3) acting on R

2 which produces a system with two equations) is
certainly different from the bracket found here. Thus, the new Poisson bracket presented in
this paper can certainly be called the conformal AGD bracket on the plane, or the conformal
generalization of the Lie–Poisson bracket on the dual of the Virasoro algebra (as opposed to the
usual AGD bracket, which is its projective generalization). It is still not clear to me whether
this bracket has any relationship with the Drinfeld and Sokolov bracket, which is defined via a
Poisson reduction on the dual of a Kac–Moody algebra, or whether this is an entirely different
branch.

I close the paper with remarks about higher-dimensional conformal cases (i.e. is there a
possible conformal family of brackets in view, one for each dimension n?), the study of surfaces,
and other possible paths of study that this result opens, some of them already in progress.

This paper tries to be self-contained. Since the method of Fels and Olver is new, we
present a summary adapted to our particular study. It is also not necessary for the reader to
have knowledge about the projective case and AGD brackets, except perhaps to understand
the reasons why I chose to study the invariant theory of the O(3, 1) conformal action on R

2

and its associated invariant evolutions.

2. Conformal invariants of parametrized curves in R2

In this section we classify all differential invariants of parametrized curves in R
2, invariant

under the conformal action of O(3, 1). For this, we find a set of generating and independent
differential invariants. But first, I will give some definitions and known results that will create
the foundation for the study. For more information in the subject see [18] or [16].

2.1. Differential invariants

We begin by reviewing the basic theory of prolonged transformation groups and differential
invariants. Let M be an m-dimensional manifold. We shall consider p-dimensional
submanifolds parametrized by immersions ι: X → M , where X is a fixed parameter space,
which, since we are only interested in local issues, can be taken to be an open subset of R

p.
Let G be an r-dimensional Lie group acting smoothly on M . In particular, since we will

study the case of parametrized curves, we are assuming that G does not act on the parameters
x ∈ X. Let GS = {g ∈ G | g · S = S} denote the isotropy subgroup of a subset S ⊂ M , and
G∗

S = ⋂
x∈S Gx its global isotropy subgroup. We assume that G acts effectively on subsets of

M , which means that G∗
U = {e} for every open U ⊂ M . If an analytic transformation group

acts effectively, it automatically acts effectively on subsets, but this equivalence does not hold
in the smooth category. We say that G acts freely if Gu = {e} for all u ∈ M . We further
incorporate the adjective ‘locally’ in these concepts by replacing {e} by a general discrete
subgroup of G.

Let Jn = Jn(X, M) denote the nth-order jet bundle consisting of equivalence classes of
submanifolds modulo nth-order contact. We introduce local coordinates x = (x1, . . . , xp) on
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X, and u = (u1, . . . , uq) on M . The induced local coordinates on Jn are denoted by u(n), with
components uα

J , where J = (j1, . . . , jk), 1 � jν � p, 0 � k � n, α = 1, . . . , q, representing
the partial derivatives of the dependent variables (u) with respect to the independent variables
(x). Note that

dim Jn = q(n) = q

(
p + n

n

)
. (2.1)

Since G preserves the order of contact between submanifolds, there is an induced action of G

on the jet bundle Jn known as its nth prolongation, and denoted by G(n) (the underlying group
being identical to G). Since we are studying the action on parametrized submanifolds, G does
not act on x, and the prolonged action becomes quite simple, namely the action is given by

G(n) × Jn → Jn

(g, uJ ) → (g · u)J .

In this paper we need to consider the action on parametrized curves, versus intrinsic
differential invariants, if we hope to establish any relationship between invariant evolutions and
Hamiltonian systems. The later ones are essentially PDEs and the group acts on them taking
solutions to solutions. These solutions have a parameter which remains unchanged under this
action, so if we want the differential invariants to be solutions of these Hamiltonian evolutions
we need to consider the action on parametrized curves, the parameter also being invariant.

Definition 2.1. An nth-order differential invariant is a function I : Jn → R which is invariant
under the action of G(n).

Let sn denote the maximal orbit dimension of the prolonged action G(n) on Jn. The stable
orbit dimension is s = max sn. The stabilization order of G is the minimal n such that sn = s.
The regular subset Vn ⊂ Jn is the open subset consisting of all prolonged group orbits of
dimension equal to the stable orbit dimension, while the singular subset is Sn = Jn \ Vn.
Note that, by this definition, Vn = ∅ and Sn = Jn if n is less than the stabilization order of
G. If G acts locally effectively on subsets, then the stabilization theorem, [18, 19], states that
s = r = dimG, which means that G(n) acts locally freely on Vn for all n.

Proposition 2.2. In a neighbourhood of any regular jet u(n) ∈ Vn, there exist q(n) − s

functionally independent differential invariants of order at most n.

The traditional method for computing higher-order differential invariants is via the method
of invariant differentiation. In the present situation, since G does not transform the parameters,
the invariant differential operators are particularly simple. Namely, the parametric total
derivative operators Di = Dxi , i = 1, . . . , p, map differential invariants to differential
invariants.

Proposition 2.3. If I (u(n)) is any differential invariant, so are its total derivatives DJ I =
Dj1 · · · Djk

I , where 1 � jν � p, k = #J � 0.

Definition 2.4. A generating set of differential invariants is a finite collection I1, . . . , IN with
the property that, for all n, every differential invariant (on an appropriate subset of Vn) can
be written as a function of the derivatives DJ Iν of the generating differential invariants.

Example 2.5. Consider the simple case of the SL(2) action on R given by fractional
transformations

SL(2) × R → R((
a b

c d

)
, u

)
→ au + b

cu + d
.
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Consider curves u: R → R (to be precise, reparametrizations of R), so that we have one
dependent variable u and one independent variable x. The prolonged action of SL(2) on
Jn(R, R) is given by

SL(2)(n) × Jn(R, R) → Jn(R, R)((
a b

c d

)
, u(k)

)
→

(
au + b

cu + d

)(k)

where (k) represents here the kth derivative with respect to x. One can show that the condition
u′ �= 0 defines a regular jet and that the stabilization order is 2. In this case, there exists one
generating differential invariant, namely the Schwarzian derivative of u

S(u) = u′′′

u′ − 3

2

(
u′′

u′

)2

.

Any other differential invariant will be a function of S(u) and its derivatives with respect to x.

Every transformation group admits a generating system of differential invariants. The
order of a generating system can be taken to be n + 1, where n is the stabilization order. The
minimal order and minimal number of differential invariants required to form a generating
system is not known in general, except in the particular case of curves, p = 1, [18].

Each of the preceding constructions has an infinitesimal counterpart. We choose a basis

vκ =
q∑

α=1

ϕα
κ (u)

∂

∂uα
κ = 1, . . . , r (2.2)

for the Lie algebra g of infinitesimal generators on M . Let {pr(n) v1, . . . , pr(n) vr} denote the
corresponding infinitesimal generators for the prolonged group action G(n). The prolonged
generator pr(n) vκ is obtained by truncating the infinitely prolonged vector fields, which in the
special case of parametrized submanifolds takes the form

pr vκ = ∑q

α=1

∑
k=#J�0 DJ ϕα

κ (u(k)) ∂
∂uα

J
(2.3)

at order n. The dimension of the orbit passing through u(n) ∈ Jn equals the dimension of the
subspace of T Jn|u(n) spanned by pr(n) v1, . . . , pr(n) vr . In particular, if G acts effectively on
subsets, a jet u(n) is regular if and only if the vector fields pr(n) v1, . . . , pr(n) vr are linearly
independent there (we will make use of this fact in the following sections). The infinitesimal
invariance criteria are standard [18].

Proposition 2.6. A function I : Jn → R is a differential invariant if and only if it is annihilated
by the infinitesimal generators: pr vκ(I ) = 0, κ = 1, . . . , r .

2.2. The regularized moving frame method

We now describe how to implement the regularized moving frame method found in [4] and [5]
in the particular case of parametrized submanifolds of an m-dimensional manifold M . Let
g = (g1, . . . , gr) be local coordinates on G in a neighbourhood of the identity. Let us write
out the group transformations v = g · u in local coordinates

vα = +α(g1, . . . , gr , u1, . . . , um). (2.4)

The functions vα in (2.4) are referred to as the zeroth-order lifted invariants, since they
are invariant under the simultaneous action (h, u) �→ (h · g−1, g · u) of G on the trivial
principal bundle G×M . Since G does not act on the parameters, the corresponding prolonged
transformations v(n) = g(n) · u(n) are easily obtained by total differentiation. The resulting
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functions vα
J = DJ vα are called the lifted differential invariants since they are invariant under

the simultaneous action (h, u(n)) → (h · g−1, g(n) · u(n)) on G × Jn.
The primary use of a moving frame is that it enables one to pass from lifted invariant

objects, which are trivial, to their ordinary invariant counterparts back on the original manifold
and its jet spaces. This allows us to systematically analyse the invariants via the particularities
of the moving frame. The following fundamental definition appears in [5], and is motivated
by earlier work of Griffiths [11] and Jensen [12].

Definition 2.7. An nth-order moving frame is a map ρ(n): Jn → G which is (locally) G-
equivariant with respect to the prolonged action G(n) on Jn, and the right action h �→ h · g−1

of G on itself.

Remark. For simplicity, we shall only consider right-moving frames in this paper. A left-
moving frame, which is equivariant with respect to left multiplication h �→ g · h is easily
obtained by inverting the right-moving frame: ρ(n)(g)−1.

Theorem 2.8. If G acts effectively on subsets, then an nth-order moving frame exists in a
neighbourhood of a point u(n) ∈ Jn if and only if u(n) ∈ Vn is a regular jet.

In particular, the minimal order at which any moving frame exists is the stabilization
order of the group. In practical implementations, the normalization procedure for constructing
moving frames amounts to choosing a (local) cross-section Kn ⊂ Vn to the (regular) prolonged
group orbits. In other words, Kn is a submanifold of dimension q(n) − r which intersects each
orbit at most once, and transversally. Given u(n) ∈ Vn, let g = ρ(n)(u(n)) denote the group
element that maps u(n) to the cross-section:

g(n) · u(n) = ρ(n)(u(n)) · u(n) ∈ Kn. (2.5)

The resulting map ρ(n): Jn → G is a moving frame. Moreover, every moving frame has this
form, where the cross-section equals the preimage Kn = (ρ(n))−1{e} of the identity element.

The simplest local cross-sections are obtained by setting r = dimG of the jet coordinates
u(n) to be constant. We denote the chosen coordinates by uν ≡ u

αν

Jν
, ν = 1, . . . , r . Therefore,

Kn = {u1 = c1, . . . , ur = cr}, where the normalization constants c1, . . . , cr are chosen so that
the normalization equations (2.5), which have the form

v1 = v
α1
J1

(g, u(n)) = c1 . . . vr = v
αr

Jr
(g, u(n)) = cr (2.6)

can be (locally) uniquely solved for g = ρ(n)(u(n)) in terms of the jet coordinates. The resulting
map defines the moving frame associated with the chosen cross-section.

Remark. Any nth-order moving frame ρ(n): Jn → G can also be viewed as a moving frame
of any higher-order k � n by composing with the standard jet space projection πk

n : Jn → Jk .
In the sequel, we will speak of ‘moving frames of order n’ with the understanding that they
may very well have been constructed at some lower order.

Example 2.9. In the SL(2) case considered before, a moving frame at a regular jet with u′ > 0
is obtained using the cross-section

K2 = {u = 0, u′ = 1, u′′ = 0}.
The normalization equations are thus given by

v = au + b

cu + d
= 0 v′ = u′

(cu + d)2
= 1 v′′ = u′′

(cu + d)2
− 2cu′2

(cu + d)3
= 0.
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Solving the normalization equations results in the second-order moving frame

ρ(2) : J2(R, R) → SL(2)

(u, u′, u′′) →
(

u′− 1
2 uu′− 1

2

1
2

u′′

u
′3
2

u
′1
2 − 1

2 u u′′

u
′3
2

)
.

We now describe how the moving frame provides us with a complete system of differential
invariants.

Definition 2.10. The fundamental nth-order normalized differential invariants associated with
a moving frame ρ(n) of order n or less are given by

I (n)(u(n)) = v(n)(ρ(n)(u(n)), u(n)) = ρ(n)(u(n)) · u(n). (2.7)

In other words, the individual components of I (n), which are

Iα
K(u(k)) = vα

K(ρ(n)(u(n)), u(k)) α = 1, . . . , q k = #K � 0 (2.8)

define differential invariants of order � n. Note that the normalized differential invariants
corresponding to the components being normalized via (2.6) will be constant. We shall call
these the phantom differential invariants. The other components of v(n) will define a complete
system of functionally independent differential invariants defined on the domain of definition
of the moving frame map. This will hold for any order n at least as large as the order of the
chosen moving frame.

Theorem 2.11. Let n be greater than or equal to the order of the moving frame. Every nth-
order differential invariant can be locally written as a function of the normalized nth-order
differential invariants I (n). The function is unique provided it does not depend on the phantom
invariants.

Example 2.12. In the SL(2) case, the second-order differential invariants are all constant
(they are phantom invariants), but if for simplicity we denote ρ(2)(u(2)), the frame we found

in example 2.9, by

(
a b

c d

)
, the third-order differential invariant is given by

ρ(2)(u(2)) · u(3) = u′′′

(cu + d)2
− 6

cu′u′′

(cu + d)3
+ 6

c2u′3

(cu + d)4
= u′′′

u′ − 3

2

(
u′′

u′

)2

= S(u).

Notice that, given the definition of prolonged action, the invariant is obtained finding
(g · u)′′′ in general first, and substituting the moving frame in the resulting expression after
differentiation.

A moving frame therefore provides a natural way to construct a differential invariant from
any differential function.

Definition 2.13. The invariantization with respect to the given moving frame of a differential
function F : Jn → R is the differential invariant F � I (n).

In particular, if F is itself a differential invariant, then it coincides with its invariantization:
F = F � I (n). Thus, invariantization defines a projection, depending on the moving frame,
from the space of differential functions to the space of differential invariants.

An alternative method to construct higher-order differential invariants is by invariant
differentiation, as in proposition 2.3. A critical remark, however, is that the total derivative of
a normalized differential invariant is not necessarily equal to the corresponding higher-order
normalized differential invariant. The fundamental recurrence formulae for the differential
invariants (2.8) are

DjI
α
K = Iα

K,j + Mα
K;j . (2.9)
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Higher-order versions,

DJ Iα
K = Iα

K,J + Mα
K;J (2.10)

are obtained by differentiating (2.9). For example,

DkDjI
α
K = DkI

α
K,j + DkM

α
K;j = Iα

K,j,k +
∑
β,L

∂Mα
K;j

∂I
β

L

(I
β

L,k + M
β

L;k).

Remark. While Iα
K,J is symmetric under permutations of the multi-index (K, J ), this is not

true for Mα
K;J , which is why we use a semicolon to separate the two indices.

The ‘correction terms’ Mα
K;j can be explicitly computed using a certain algorithm, which

can be found in [6]. As we will see below, except in the case of curves, where p = 1, the
differentiated invariants are not necessarily functionally independent. A syzygy is a functional
dependency H(. . . DJ Iν . . .) ≡ 0 among the fundamental differentiated invariants. The
recurrence formulae not only provide us with a generating system of fundamental differential
invariants, but also classifies all syzygies among the normalized differential invariants.

Theorem 2.14. A generating system of differential invariants consists of (a) all non-phantom
zeroth-order differential invariants Iα , and (b) all non-phantom differential invariants of the
form Iα

J,i where Iα
J is a phantom differential invariant. In other words, every other differential

invariant can, locally, be written as a function of the generating invariants and their invariant
derivatives, DKIα

J,i .
All syzygies among the differentiated invariants are differential consequences of the

following two fundamental types:

(i) DJ Iα
K = cν + Mα

K,J , when Iα
K is a generating differential invariant, while Iα

J,K = cν is a
phantom differential invariant, and

(ii) DJ Iα
LK − DKIα

LJ = Mα
LK,J − Mα

LJ,K , where Iα
LK and Iα

LJ are generating differential
invariants, the multi-indices K ∩J = ∅ are disjoint and non-zero, while L is an arbitrary
multi-index.

A minimal system of differential invariants can be found by a careful analysis of the
recurrence relations and consequent syzygies. Examples appear in [5] and [16].

2.3. A regularized moving frame for conformal curves in R
2

In this section we will apply the regularized moving frame method to our particular case of
curves in R

2, under the conformal action of O(3, 1). The study will follow the following
outline: after describing the action, we will find regular prolonged orbits. In order to find a
moving frame along regular jets we need to choose a local cross-section to regular prolonged
group orbits. This is accomplished via the normalization of a certain number of jet coordinates.
The group element taking a nearby general element u(n) to the cross-section defines the moving
frame. The normalization equations (2.6) obtained when normalizing the corresponding lifted
differential invariants give us, when solved, the explicit expression for the moving frame. We
finally use the frame to find a generating system of differential invariants, via theorem 2.14.

In our particular case, X = R or an open subset of R, M = R
2 and G = O(3, 1), acting

on R
2 conformally. That is, the action is given locally by

O(3, 1) × R
2 → R

2

((ai
j ), (u1, u2)) → (v1, v2)

v1 = a2
1 q + a2

2 u1 + a2
3 u2 + a2

4

a4
1 q + a4

2 u1 + a4
3 u2 + a4

4

v2 = a3
1 q + a3

2 u1 + a3
3 u2 + a3

4

a4
1 q + a4

2 u1 + a4
3 u2 + a4

4

(2.11)
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where q is such that 2q + (u1)2 + (u2)2 = 1. The conformal action of O(n + 1, 1) on R
n can

be described as follows.
Let O(n + 1, 1) be the set of matrices preserving the indefinite Minkowski metric defined

via the matrix

C =




0 0 0 · · · 0 1
0 1 0 · · · 0 0
0 0 1 · · · 0 0

· · · · · · · · · . . . · · · · · ·
0 0 0 · · · 1 0
1 0 0 · · · 0 0




.

That is, N ∈ O(n + 1, 1) if, and only if, NCNT = C, where T denotes transposition.
Let RP

n+1
0 be the lightcone in Minkowski space, that is, points in RP

n+1 with zero
Minkowski length. We can also think of them as lines in R

n+2 such that xCxT = 0 whenever
x is on the line.

O(n + 1, 1) acts naturally on R
n+2 via the usual multiplication. Given that O(n + 1, 1)

preserves the metric, it also acts on RP
n+1
0 if we immerse RP

n+1 into R
n+2 the usual way. If

U ∈ RP
n+1 is a coordinate chart, the immersion of RP

n+1 into R
n+2 will take locally the form

η : U → R
n+2

y → (y, 1).

Now, R
n can be identified locally with RP

n+1
0 using the map

ν : R
n → RP

n+1
0

u → (q, u)

where q is uniquely determined through the relationship 2q + (u1)2 + · · · + (un)2 = 0 which
is necessary upon imposing the zero length condition. Here u = (u1, . . . , un). Let π be the
projection of R

n+2 − {0} on RP
n+1.

The action of O(n + 1, 1) on R
n is given by the map

O(n + 1, 1) × R
n → R

n

(N, u) → N · u = ν−1(πN(η(ν(u))))
(2.12)

that is, we lift u to an unique element on the lightcone, lift the line to R
n+2, multiply by N and

project back into RP
n+1
0 and into R

n. In the case n = 2, this procedure results in (2.11).
Since a general element g = (ai

j ) ∈ O(3, 1) preserves the indefinite conformal metric,
its entries also hold some relationships. These are given by the equations

(ai
2 )2 + (ai

3 )2 + 2ai
1 ai

4 = 1 i = 2, 3 (2.13)

(ai
2 )2 + (ai

3 )2 + 2ai
1 ai

4 = 0 i = 1, 4 (2.14)

ai
2 a

j

2 + ai
3 a

j

3 + ai
1 a

j

4 + ai
4 a

j

1 = 0 i, j = 1, . . . , 4 i �= j (2.15)

which the entries of g must satisfy. They form a total of ten equations. We knew that number
since the dimension of O(3, 1) is equal to six. Notice that the entries a1

j , j = 1, . . . , 4, do not
appear in the formula of the action (2.11). They have a role up to the point where O(3, 1) acts
on RP

3
0, but they disappear upon projection. Hence, we are going to drop the four equations

involving these entries from (2.13)–(2.15) with the certainty that they will not be needed to
find the differential invariants. Of course, the moving frame itself will not be complete without
them, but the interested reader can always find their explicit expression from the four equations
we intend to ignore, after we have found the values of the remaining entries.

For convenience we will introduce the following notation.
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Let D = a4
1 q + a4

2 u1 + a4
3 u2 + a4

4 . Denote by Ai
j the following expressions: Ai

2 =
ai

2 − u1ai
1 , Ai

3 = ai
3 − u2ai

1 , Ai
4 = ai

4 − qai
1 , for i = 2, 3, 4. With this new notation, the

equations above (2.13)–(2.15) can be rewritten in a simpler way. They become

(A
j

2)
2 + (A

j

3)
2 = 1 i = 2, 3 (2.16)

(A4
2)

2 + (A4
3)

2 = −2Da4
1 (2.17)

Ai
2A

4
2 + Ai

3A
4
3 + Dai

1 = 0 i = 2, 3 (2.18)

A2
2A

3
2 + A2

3A
3
3 = 0. (2.19)

The final system we need to solve will prove to be simpler than the previous one if we make
use of Ai

j instead of ai
j .

Proposition 2.15. Let |ct | be the (Euclidean) length of ct = (u1
t , u2

t ), where t is the curve
parameter and the subindex indicates differentiation. If |ct | �= 0, then u(n) ∈ Jn is a regular
jet for the prolonged action of O(3, 1), for any n � 2.

Proof. As we pointed out before proposition 2.6, it suffices to show that the vectors
{pr(n) v1, . . . , pr(n) v6} are independent whenever n � 2, where the vectors v are infinitesimal
generators for the conformal action on R

2. It is known (see [18]) that a set of generators for
the infinitesimal conformal action of o(3, 1) on R

2 is given by the vectors

v1 = ∂

∂u1
v2 = ∂

∂u2

v3 = u1 ∂

∂u1
+ u2 ∂

∂u2
v4 = u2 ∂

∂u1
− u1 ∂

∂u2

v5 = ((u1)2 − (u2)2)
∂

∂u1
+ 2u1u2 ∂

∂u2
v6 = 2u1u2 ∂

∂u1
+ ((u2)2 − (u1)2)

∂

∂u2
.

(2.20)

According to (2.3), if we denote by µij the expression µij = ((ui)2−(uj )2), then the following
matrix has the second-order prolongations of these six vectors as rows, in the obvious order:



1 0 0 0 0 0
0 1 0 0 0 0
u1 u2 u1

t u2
t u1

t t u2
t t

u2 −u1 u2
t −u1

t u2
t t −u1

t t

µ12 2u1u2 µ12
t 2(u1u2)t µ12

t t 2(u1u2)tt

2u1u2 µ21 2(u1u2)t µ21
t 2(u1u2)tt µ21

t t


 .

Although it is a long and tedious calculation, it is fundamentally trivial to check that, after row
reduction, the matrix above becomes the identity matrix, if we simply assume that |ct | �= 0
(and, hence, so is either u1

t or u2
t ). �

Given the previous result and the statement of theorem 2.8, we know that a moving frame
of order two exists around any point of the curve such that |ct | �= 0. This frame can be found
via the normalizations of a number of components of (v1, v2)(k) for k � 2.

Theorem 2.16. A moving frame for the prolonged conformal action of O(3, 1)(2) on J2 is given
by the following map:

ρ(2): J2 → O(3, 1)

(u1, u2)(2) → (ai
j )
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where

a2
1 = ∓2

ct · ctt

|ct |3

a3
1 = ±1

1

|ct |3
∣∣∣∣ u1

t u2
t

u1
t t u2

t t

∣∣∣∣ ∓2
1

|ct |
a4

1 = ∓2
1

2|ct |3 [|ct |2 + |ctt |2] ±1
1

|ct |3
∣∣∣∣ u1

t u2
t

u1
t t u2

t t

∣∣∣∣
a2

2 = u1a2
1 ±2

u1
t

|ct | a2
3 = u2a2

1 ±2
u2

t

|ct | a2
4 = qa2

1 ∓2
c · ctt

|ct |
a3

2 = u1a3
1 ∓1

u2
t

|ct | a3
3 = u1a3

1 ∓1
u2

t

|ct | a3
4 = qa3

1 ±1
1

|ct |
∣∣∣∣ u1 u1

t

u2 u2
t

∣∣∣∣
a4

2 = u1a4
1 ±2

1

|ct | [2u1
t u

2
t u

2
t t + ((u1

t )
2 − (u2

t )
2)u1

t t ] ∓1
u2

t

|ct |
a4

3 = u2a4
1 ±2

1

|ct | [2u1
t u

2
t u

1
t t + ((u2

t )
2 − (u1

t )
2)u2

t t ] ±1
u1

t

|ct |
a4

4 is determined by the relationship

D = qa4
1 + u1a4

2 + u2a4
3 + a4

4 = ±2|ct |
and where a1

i are determined by the four equations we have chosen to ignore. The signs ±1

and ±2 correspond to local choices and are independent of each other.

Proof. Following the technique described by Fels and Olver, we need to specify the
normalizations of six components of the six that form (v1, v2)(2) (that is, all of them). We also
need to further choose the normalization constants so that equations (2.6) are uniquely solvable
for the parameter ai

j . The solution of that system will provide the element ρ(2) ∈ O(3, 1)

which takes (u1, u2) to the section transverse to the regular prolonged orbit, and which is itself
prescribed by the normalizations chosen. ρ(2) defines the frame.

We choose the following normalizations

v1 = 0 v1
t = 1 v2

t = 0
v2 = 0 v1

t t = 0 v2
t t = 1.

(2.21)

Next, in the notation used for (2.16)–(2.19), (2.21) can be rewritten as

A
j

4 + u1A
j

2 + u2A
j

3 = 0 j = 2, 3 (2.22)

u1
1A

j

2 + u2
1A

j

3 = Dδ2
j j = 2, 3 (2.23)

u1
2A

j

2 + u2
2A

j

3 − |ct |2aj

1 =
{

2Dt j = 2

D j = 3
(2.24)

where Dt is given by Dt = a4
1 qt + a4

2 u1
t + a4

3 u2
t , and where δ2

j denotes the delta of Kronecker.
Therefore, the frame will be found once we solve for the element g = (ai

j ) ∈ O(3, 1) using
equations (2.16)–(2.19), and (2.22)–(2.24).

Indeed, using first (2.23) and (2.16) with j = 3 we obtain

A3
2 = ∓1

u2
t

|ct | A3
3 = ±1

u1
t

|ct | . (2.25)

Along these calculations we will introduce several possibilities for different signs (as a result
of the nonlinear relationships imposed by the group condition). Hence we are numbering these
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signs as ±1,2,... to indicate the independence between those choices. Given the values we have
obtained in (2.25), we can use (2.24) to obtain the value of a3

1

a3
1 = ±1

|ct |3
∣∣∣∣ u1

t u2
t

u1
t t u2

t t

∣∣∣∣ − D

|ct |2 . (2.26)

We can next solve equations (2.16), (2.23) (for j = 2), together with (2.19) to obtain the values

A2
2 = ±2

u1
t

|ct | A2
3 = ±2

u2
t

|ct | D = ±2|ct |. (2.27)

Making use of the remaining equations, we obtain the rest of the values, namely

a2
1 = − ±2

1

|ct |3 ct · ctt Dt = ±2
1

|ct |ct · ctt (2.28)

A4
2 = ±2

1

|ct | [2u1
t u

2
t u

2
t t + ((u1

t )
2 − (u2

t )
2)u1

t t ] ∓1
u2

t

|ct | (2.29)

A4
3 = ±2

1

|ct | [2u1
t u

2
t u

1
t t + ((u2

t )
2 − (u1

t )
2)u2

t t ] ±1
u1

t

|ct | (2.30)

a4
1 = ∓2

1

2|ct |3 [|ct |2 + |ctt |2] ±1
1

|ct |3
∣∣∣∣ u1

t u2
t

u1
t t u2

t t

∣∣∣∣ . (2.31)

Using the definition of Ai
j , we obtain the values of ai

j appearing in the statement of the theorem.
It is obvious that the group relations involving the parameters a1

i , i = 1, . . . , 4, as expressed
in (2.14) and (2.15), determine the values of these parameters locally. �

2.4. A generating set of independent differential invariants

Once we have a moving frame for the prolonged action of O(3, 1), obtaining a set of independent
differential invariants is quite simple. Perhaps the most useful theorem for us is theorem 2.14,
which describes not only a generating set of differential invariants, but also their syzygies—
algebraic relations among the generating invariants and their derivatives.

Theorem 2.17. A generating set of independent differential invariants for the conformal action
of O(3, 1) on parametrized curves on the plane is given by the following two invariants:

I 1 = ct ∧ cttt

|ct |2 − 3
ct · ctt

|ct |4 ct ∧ ctt (2.32)

I 2 = ct · cttt

|ct |2 − 3

2

|ctt |2
|ct |2 + 3

(ct ∧ ctt )
2

|ct |4 . (2.33)

Observe that, when calculating I 1 and I 2, the signs ±1 and ±2 are factored in the process
from I 1 and I 2, respectively, and so the invariants do not depend on the choice of sign, as
should be expected. Also, note that these invariants are in fact generalizations of the Schwarz
derivative to the conformal case (the Schwarz derivative is the generating differential invariant
for the projective action on reparametrizations of RP, case n = 1).

Proof. Following theorem 2.14, we conclude that a generating system of differential invariants
is given by the substitution of our frame in the expression for v1

t t t and v2
t t t . That is, we need to

find the expression for both of them before normalizations and normalize (i.e. apply the frame)
afterwards. If we denote by Ni the numerator of vi , that is, Ni = ai+1

1 q+ai+1
2 u1+ai+1

3 u2+ai+1
4 ,

then vi
ttt can be written as

vi
ttt = Ni

ttt

D
− 3

Ni
tt

D

Dt

D
+ 3

Ni
t

D

(
Dt

D

)2

− 3
Ni

t

D

(
Dt

D

)
t

+ Ri (2.34)
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where Ri depends on Ni , and will vanish after the normalizations vi = 0, i = 1, 2. Next we
apply normalizations (2.21). The first group, vi = 0, implies Ni = 0, and hence Ri = 0. The
second group, v1

t = 1, v2
t = 0, results in N1

t = D and N2
t = 0. The third group, v1

t t = 0 and
v2

t t = 1, gives us the values N1
t t = 2Dt and N2

t t = D. With all these data substituted into (2.34)
we obtain that I 2 and I 1 are given by the application of the frame to the expressions

N1
t t t

D
− 3

Dtt

D
(2.35)

and
N2

t t t

D
− 3

Dt

D
(2.36)

respectively. That is, I 2 and I 1 are produced by the above expressions after normalization.
We can easily find Ni

ttt = qttt a
i+1
1 +u1

t t t a
i+1
2 +u2

t t t a
i+1
3 via the values (2.25)–(2.28), in addition

to the relationship qttt = −c · cttt − 3ct · ctt . The values of D and Dt have also been directly
obtained in (2.27) and (2.28). The only expression we need to solve for is Dtt , which is trivial
since we know the value of the parameters a4

1 , a4
2 and a4

3 from the explicit expression of the
frame. If we put together all these values in expressions (2.36) and (2.35) we obtain the values
of I 1 and I 2 specified in the statement of the theorem.

The only point that needs further thought is the independence of these two invariants,
but one can prove it easily making use of theorem 2.14. There we find a classification of all
possible relationships between invariants and their derivatives (syzygies). As the theorem tell
us they are all of the form

DJ Iα
K = cν + Mα

K,J

and

DJ Iα
LK − DKIα

LJ = Mα
LK,J − Mα

LJ,K

where Iα are generating differential invariants or phantom invariants, depending on the
equation, and where the differential multi-indices have certain conditions. What is important
to us is the fact that no two invariants obtained via normalizations of different lifted invariants
(above corresponding to different choices of α) have any functional relationship among them
or their derivatives that makes them dependent. In our case, I 1 and I 2 are formed normalizing
v1

t t t and v2
t t t and hence they must be independent. �

3. Evolutions in R2 which are conformally invariant

In this section we want to find a general formula for the evolution of curves in R
2 of the form

us = F(u1, u2, u1
t , u2

t , u1
t t , u2

t t , . . .) (3.1)

which is invariant under the conformal action of O(3, 1) on R
2; that is to say, if u is a solution

of (3.1), we want M · u to be also a solution of (3.1), where M is any element in O(3, 1) and
where · denotes the action of O(3, 1) on R

2. In order to find such an evolution we introduce a
definition and a known theorem about the character of what is called a relative invariant. The
definition below is given in the general context found in earlier parts of section 2.

Definition 3.1. Let F be an nth vector function defined on the jet space F : Jk → C
∞(R) ×

n)

··· × C
∞(R). Let vκ = ∑q

α=1 ϕα
κ (u) ∂

∂uα , κ = 1, . . . , r, be a generating set of infinitesimal
generators of the action whose algebra of infinitesimal generators is given by g. Assume that

pr vκ(F ) = ∂ϕκ

∂u
F (3.2)
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where ∂ϕκ

∂u
is the (n − 1) × (n − 1) matrix with (i, j) entry ∂ϕi

κ

∂uj . Then F is called a relative

vector differential invariant of the Lie algebra g, whose associated weight is the matrix ∂ϕ

∂u
.

One of the main properties of relative differential invariants is described in the following
theorem, which can be found in [10].

Theorem 3.2. The most general vector F making an nth dimensional evolution of the form (3.1)
invariant under the action of a group G is given by

F = µJ

where the n × n matrix µ = (µ1 µ2 · · · µn−1) is any matrix with nonvanishing determinant
and whose columns µi are particular solutions of (3.2), and where J = (Jk)

n
k=1 is an arbitrary

absolute (vector) differential invariant of the algebra g, i.e. a solution of

pr v(Ji) = 0 for all v ∈ g i = 1, . . . , n.

That is, in order to find a formula for the most general evolution of curves on the plane,
invariant under the conformal action of O(3, 1), we need to find a nondegenerate matrix whose
columns are relative differential invariants for the action.

Theorem 3.3. Assume that c = (u1, u2) holds |ct | �= 0. Then, any evolution of the form (3.1),
invariant under the conformal action of O(3, 1), can be written as(

u1

u2

)
s

=
(

u1
t u2

t

−u2
t u1

t

) (
J1

J2

)
(3.3)

where J1 and J2 are any two differential invariants for the action. That is, they are functions
of I1, I2 given in (2.32) and (2.33), and their derivatives with respect to t .

Proof. In view of our previous discussion, it is clear that we simply need to show that the two
vectors (

u1
t

−u2
t

)
and

(
u2

t

u1
t

)
are relative invariants for the conformal action of O(3, 1) on the plane. This is the result of a
straightforward calculation using the set of infinitesimal generators given in (2.2), the formula
for their prolongation given in (2.3) and the definition of a relative invariant. �

We have now laid all the foundations to construct a conformal generalization of the AGD
bracket. This will be the main result in the section that follows.

4. A conformal analogue of the second AGD bracket

A new, purely geometrical, definition of the AGD Hamiltonian hierarchy associated with SL(n)

was given in [15] by the present author. This definition was previously conjectured to be true
in [10], and it can be explained as follows.

Consider the projective action of SL(n) on parametrized curves on R
n−1. This action has a

total of n − 1 independent and generating differential invariants, which were discovered at the
turn of the century in [21]. These invariants depend, of course, on the components of the curves
and their derivatives with respect to the parameter. The formula for the most general evolution
of projective curves of the form (1.1), invariant under the projective action of SL(n), was found
in [10]. This evolution induces an evolution on the jet coordinates (via differentiation) and
hence a parallel evolution on the generating differential invariants. It was conjectured [10]
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that such an evolution was indeed the AGD Hamiltonian evolution defined originally by Adler
in [1], and vice versa, that any AGD evolution came from an invariant evolution of differential
invariants. Furthermore, the nondegenerate matrix of relative invariants could be interpreted
in this context as the Poisson tensor in ‘projective coordinates’. The result was proven to be
true in [15].

In this section we will follow that same path of reasoning. We will prove that evolution (3.3)
induces naturally an evolution upon the set of independent differential invariants {I 1, I 2} found
in the previous section. We will show that such an evolution is Hamiltonian, and so it can be
considered as a conformal AGD bracket on the plane. At the end of the chapter we will discuss
the implications of this result and a number of questions that it poses.

The following are a list of basic definitions related to infinite-dimensional Poisson brackets.
Any reader needing more information could consult the last chapter of [17].

Definition 4.1. Let M ⊂ R × U be an open subset of the space of independent variable t and
dependent variables u = (u1, . . . , un). The algebra of differential functions P(t, u(n)) over
M is denoted by T . The quotient space under the image of the total divergence is the space F
of functionals of the form

H(u(n)) =
∫

H dt (4.1)

for a certain element H ∈ T .
In all practical cases of importance t is taken to belong to either R or S1 and the funtions

u(t) are assumed to be C∞ (or analytic) and either vanishing at infinity or periodic (in all
cases boundary conditions are imposed so that integration by parts can be used without care
for the boundary terms). The elements of F are usually assumed to be differentiable in the
Frechèt sense.

(a) Let H ∈ F be defined as the Hamiltonian functional H(u(n)) = ∫
H dt for some H ∈ T .

We say that δH
δui is the Frechèt derivative of H in the direction of ui whenever

d

dε

∣∣∣∣
ε=0

H(u1, . . . , ui + εvi, . . . , un) =
∫

δH
δui

(t, u(n))vi dt.

(b) The vector function δH = ( δH
δu1 , δH

δu2 , . . . , δH
δun ) ∈ T ×· · ·×T = T n is called the functional

gradient of H.
(c) Let D : T n → T n be an n × n matrix whose entries are linear differential operators.

Define the following bilinear operation:

{,} : F × F → F
{G, H}(u(n)) =

∫
δGDδH dt.

(4.2)

We say that D is Hamiltonian and that {,} is a Poisson bracket whenever {,} holds the
following two properties:

(i) {G, H} = −{H, G}
(ii) {P, {G, H}} + {G, {H, P}} + {H, {P, G}} = 0 (Jacobi’s identity)

for all functionals P, G, H ∈ F . Note that the so-called Leibniz’s property for Poisson
brackets immediately holds true once we ask D to have linear differential operators as
entries.
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Theorem 4.2. Let I 1 and I 2 be defined as in theorem 2.17. Then, if the family of curves
c(s, t) = (u1, u2)(s, t) satisfies |ct | �= 0 and evolves according to (3.3), I 1, I 2 evolve according
to the following evolution:(

I 1

I 2

)
s

=
(

∂3 + 2I 2∂ + I 2
t 2I 1∂ + I 1

t

2I 1∂ + I 1
t −∂3 − 2I 2∂ − I 2

t

) (
J1

J2

)
(4.3)

where J1, J2 are the same differential invariants as appear in (3.3) and where ∂ = d
dt

.

Furthermore, if H ∈ F and (J1, J2) coincide with its functional gradient,

(J1, J2) =
(

δH
δu1

,
δH
δu2

)

then (4.3) is Hamiltonian and H is its associated Hamiltonian functional.
Notice that the condition imposed upon (J1, J2) in the theorem coincides with the one

imposed on the general invariant vector in [10].

Proof. The first part of the theorem can easily be proved straightforwardly. It suffices to
apply the total derivative with respect to s to the invariants (I 1, I 2), to use the fact that s and
t differentiation commute, and to make use of formula (3.3) to rewrite the I -evolution as it is
shown in the statement of the theorem.

The second part is more involved. We need to show that if {,} is the bracket defined by D
via (4.2), where D is given by

D =
(

∂3 + 2I 2∂ + I 2
t 2I 1∂ + I 1

t

2I 1∂ + I 1
t −∂3 − 2I 2∂ − I 2

t

)
(4.4)

then {,} is a Poisson bracket.
Some of these properties are quite obvious. For example (4.4) is obviously bilinear and

it satisfies Leibniz’s rule, since the entries of D are all linear differential operators. It is also
clear that D∗ = −D and so {G, H} = −{H, G}. Therefore we will focus on the Jacobi identity.

Our aim is to show that

{P, {G, H}}(I (n)
1 , I

(n)
2 ) + {G, {H, P}}(I (n)

1 , I
(n)
2 ) + {H, {P, G}}(I (n)

1 , I
(n)
2 ) = 0 (4.5)

for any functionals P , G, H ∈ F . Denote by P , G and H the kernels associated with P , G
and H respectively, so that P(I ) = ∫

P dt , etc, as it is shown in (4.1). Then, we need to
show that the kernel associated with the functional shown in (4.5) is the total derivative with
respect to t of a certain differentiable function depending on t, I1, I2 and their derivatives with
respect to t . Then, the functional itself will be zero as an element of F . Since D has linear
differential operators as entries (that is {,} follows Leibniz’s rule), we can assume that P, G
and H are linear functionals. That is, their gradients will be vectors independent of I1, I2 and
their derivatives.

Finally, for the sake of simplicity, let us call δH
δu1 = h1 and δH

δu2 = h2, and let us assume
similar notation for G and P . Then, we can rewrite

{G, H}(I (1)
1 , I

(1)
2 ) =

∫
(g1g2)D

(
h1

h2

)
dt.

From the expression above, we learn that the gradient of {G, H} is given by

(2g1h
′
1 − (g1h1)

′ − 2g2h
′
2 + (g2h2)

′ 2g1h
′
2 − (g1h2)

′ + 2g2h
′
1 − (g2h1)

′)

=
(∣∣∣∣ g1 h1

g′
1 h′

1

∣∣∣∣ −
∣∣∣∣ g2 h2

g′
2 h′

2

∣∣∣∣ ,

∣∣∣∣ g1 h1

g′
2 h′

2

∣∣∣∣ +

∣∣∣∣ g2 h2

g′
1 h′

1

∣∣∣∣
)
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where ’ (also!) denotes differentiation with respect to t . Therefore, the kernel associated with
{P, {G, H}}(I (1)

1 , I
(1)
2 ) is given by

(p1p2)D(I
(1)
1 , I

(1)
2 )




∣∣∣∣ g1 h1

g′
1 h′

1

∣∣∣∣ −
∣∣∣∣ g2 h2

g′
2 h′

2

∣∣∣∣∣∣∣∣ g1 h1

g′
2 h′

2

∣∣∣∣ +

∣∣∣∣ g2 h2

g′
1 h′

1

∣∣∣∣


 .

If we denote by Z(I ) = ∂3+2I∂+It and S(I ) = 2I∂+It = ∂I+I∂ , we should recall at this point
that these are well known Hamiltonian operators, the first one being the second Hamiltonian
structure for the KdV equation. That is, the brackets defined on the set of functionals in one
variable I and their derivatives with respect to t as

{L, R}1(I
(n)) =

∫
lS(I )r dt

{L, R}1(I
(n)) =

∫
lZ(I )r dt

both obey Jacobi’s identity (here l = δL
δI

and r = δR
δI

). This implies the following: note that
the gradient of {L, R}1(I ) and {L, R}2(I ) are both identically equal to

2lr ′ − (lr)′ =
∣∣∣∣ l r

l′ r ′

∣∣∣∣
and so Jacobi’s identity implies that the cyclic sums (in (B, L, R)) of both

{B, {L, R}1, }1(I
(1)) = bS(I )

∣∣∣∣ l r

l′ r ′

∣∣∣∣
{B, {L, R}2, }2(I

(1)) = bZ(I )

∣∣∣∣ l r

l′ r ′

∣∣∣∣
(4.6)

are equal to zero.
Going back to our original bracket, we need to show that the cyclic sum (in (P, G, H)) of

p1

[
S(I1)

(∣∣∣∣ g1 h1

g′
1 h′

1

∣∣∣∣ −
∣∣∣∣ g2 h2

g′
2 h′

2

∣∣∣∣
)

+ Z(I2)

(∣∣∣∣ g1 h1

g′
2 h′

2

∣∣∣∣ +

∣∣∣∣ g2 h2

g′
1 h′

1

∣∣∣∣
)]

+p2

[
Z(I2)

(∣∣∣∣ g1 h1

g′
1 h′

1

∣∣∣∣ −
∣∣∣∣ g2 h2

g′
2 h′

2

∣∣∣∣
)

− S(I1)

(∣∣∣∣ g1 h1

g′
2 h′

2

∣∣∣∣ +

∣∣∣∣ g2 h2

g′
1 h′

1

∣∣∣∣
)]

is the total derivative of some function depending on I1, I2 and their derivatives. This expression
can be reorganized as

p1S(I1)

∣∣∣∣ g1 h1

g′
1 h′

1

∣∣∣∣ − p2Z(I2)

∣∣∣∣ g2 h2

g′
2 h′

2

∣∣∣∣ (4.7)

+p1Z(I2)

∣∣∣∣ g1 h1

g′
2 h′

2

∣∣∣∣ + p1Z(I2)

∣∣∣∣ g2 h2

g′
1 h′

1

∣∣∣∣ + p2Z(I2)

∣∣∣∣ g1 h1

g′
1 h′

1

∣∣∣∣ (4.8)

−p1S(I1)

∣∣∣∣ g2 h2

g′
2 h′

2

∣∣∣∣ − p2S(I1)

∣∣∣∣ g2 h2

g′
1 h′

1

∣∣∣∣ − p2S(I1)

∣∣∣∣ g1 h1

g′
2 h′

2

∣∣∣∣ . (4.9)

The cyclic sum of the first two terms is equal to a total derivative given that both {,}1 and {,}2

obey Jacobi’s identity. The cyclic sum of the three terms in (4.8) reorganizes as

p1Z(I2)

∣∣∣∣ g1 h1

g′
2 h′

2

∣∣∣∣ + g1Z(I2)

∣∣∣∣ h2 p2

h′
1 p′

1

∣∣∣∣ + h2Z(I2)

∣∣∣∣ p1 g1

p′
1 g′

1

∣∣∣∣
+g1Z(I2)

∣∣∣∣ h1 p1

h′
2 p′

2

∣∣∣∣ + h1Z(I2)

∣∣∣∣ p2 g2

p′
1 g′

1

∣∣∣∣ + p2Z(I2)

∣∣∣∣ g1 h1

g′
1 h′

1

∣∣∣∣
+h1Z(I2)

∣∣∣∣ p1 g1

p′
2 g′

2

∣∣∣∣ + p1Z(I2)

∣∣∣∣ g2 h2

g′
1 h′

1

∣∣∣∣ + g2Z(I2)

∣∣∣∣ h1 p1

h′
1 p′

1

∣∣∣∣ .
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Each one of the three groups of three terms above is equal to a total derivative due to the Jacobi
identity of {,}2(I

(1)
2 ). (Note that the fact that pi, gi and hi, i = 1, 2 are constant—independent

of I1 and I2—is fundamental here.) The same situation occurs with the final group of three
terms (4.9). You simply need to interchange 1 and 2 subindices and apply Jacobi’s identity for
S(I1). This concludes the proof of the theorem. �

5. Conclusion

We have presented here an study showing that the invariant evolutions of conformal differential
invariants for parametrized curves in R

2 are, indeed, Hamiltonian evolutions. We have
additionally found the explicit expression of a set of independent and generating differential
invariants, fully classifying all differential invariants. Additionally, we have given explicitly
the Poisson tensor associated with this Hamiltonian evolution.

The number of questions that this paper poses is by far larger that the number of questions
it answers. To name a few, I start with the possibility of a family of brackets. In the projective
case, generalizing the KdV Hamiltonian evolution to higher dimensions produced a Poisson
bracket for each one of the dimensions, i.e., a Hamiltonian evolution for family of curves in
R

n. The first natural question is whether such is the case for the conformal analogue. Another
interesting question is what happens in the case of O(p + 1, q + 1), p + q = n, or, in general,
in the case of any group action. If one looks a bit closer at the case of groups whose invariants
are well known (for example the Euclidean group), it becomes clear after a while that not all
groups have the property described here for O(3, 1) and in [15] for the projective group. For
example, it often happens that the number of generating invariants is smaller or larger that the
dimension and hence it is impossible or unlikely to obtain a Hamiltonian evolution similar
to the KdV kind. Therefore we would need some sort of classification of those groups for
which the result holds true. This study must be done in a general setting, perhaps avoiding the
explicit search for differential invariants, but not their classification. The best approach could
be the use of antiplectic pairs as described by Wilson in [22] and [23]. This approach was
successfully applied by the present author in the projective case [15]. Of course, ideally one
should try to describe conformal differential invariants in a fashion similar to the one found
in [21], but it seems to be an approach less likely to succeed, since it seems to be tailored to
each special case.

Finally, it should be possible to successfully apply the method described here to the
classification of differential invariants of reparametrizations of R

n, invariant under the
conformal group. Furthermore, this classification can aid also in classifying cocycles
generalizing the Schwarz derivative in the conformal case (considered as a nontrivial cocycle).
In this sense, generalizations of the Schwarz derivative to higher dimensions were found by
Bouarroudj and Ovsienko in [2] for the projective case and it has applications to quantization.
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